SCH4U -	Test#2
---------	--------

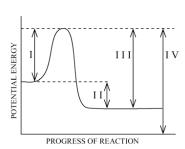
Knowledge/	Thinking/Inquiry	Communication	Application	Total
Understanding				
15	7	12	10	44

Knowledge: [....../15]

- 1-An increase in temperature:
- a) Lowers the activation energy

- b) Increases the number of collisions
- c) Increases the population of molecules that can overcome the activation barrier
- d) b and c

- e) a and c
- 2- Consider the following experimental results, which of the following factors would account for the lower rate in Experiment 1?


	Experiment 1	Experiment 2
Reactants	powdered Cu and HCl	chunk of Cu and HNO ₃
Temperature	20°C	10°C
Concentration of acid	0.6M HCl	0.4 M HNO ₃
Rate	low	high

- A. Temperature
- B. nature of reactants
- C. surface area of Cu
- D. concentration of acid
- 3- Which of the following actions would not change the rate of a reaction?
- a) increasing the concentration of the reactants
- b) increasing the available surface area of a reactant

c) using different reactants

d) removing heat from the reaction

- e) none of the above
- 4- Consider the following potential energy diagram:

The energy interval that represents the activation energy for this reaction is:

- A. I
- B. II

- C. III
- D. IV

5- Which of the follow CO (g) ?	ing equations shows the correct	ct thermochemical eq	nation for the heat of formation of
a) $C_{(s)} + O_{(g)} \longrightarrow$	$CO_{(g)}+110.5kJ$	b) $C_{(s)} + \frac{1}{2}O_{2(g)}$	$\rightarrow CO_{(g)} + 110.5kJ$
c) $C_{(s)} + O_{2(g)} \longrightarrow$	$CO_{(g)}-110.5kJ$	d) $C_{(s)} + O_{2(g)}$ ——	$\rightarrow CO_{(g)} + 110.5kJ$
e) $2C_{(s)} + O_{2(g)} \longrightarrow$	$2CO_{(g)} + 110.5kJ$		
6- Which of the follow	wing are necessary for success	ful collisions to occur	?
I :Favorable geometry	II :Sufficient energy	y III :	Large ΔH
A. I only	B. I and II only	C. II and III only	D.I, II, and III
and state which of the	owing situations, determine the 5 factors affecting rate of react into smaller pieces before bei	tion are being change	
a) Circle the correct of	choice:		
Rate Increases	Rate Decreases	Rate stays the Same	Impossible to Determine
b) Which factor(s) is	/are being changed?		
In the reaction of baat 20°C.	king soda and vinegar, 5 ml of vi	negar at 15°C is replace	ed with 3 ml of vinegar
a) Circle the correct	t choice:		
Rate Increases	Rate s Decreases	Rate stays the Same	Impossible to Determine
b) Which factor(s)	is/are being changed?		(2.5)
			(2.3)

8. Use the thermo chemical equations shown below to determine the enthalpy for the reaction: (5)

 $HCl(g) + NaNO_2(s) \rightarrow HNO_2(l) + NaCl(s)$ given the following reactions:

$$2\text{NaCl}(s) + \text{H}_2\text{O}(l) \rightarrow 2\text{HCl}(g) + \text{Na}_2\text{O}(s)$$
 $\Delta H = 507 \text{ kJ}$

$$NO(g) + NO_2(g) + Na_2O(s) \rightarrow 2NaNO_2(s)$$
 $\Delta H = -427 \text{ kJ}$

$$NO(g) + NO_2(g) \rightarrow N_2O(g) + O_2(g)$$
 $\Delta H = -43 \text{ kJ}$

$$2HNO_2(1) \rightarrow N_2O(g) + O_2(g) + H_2O(1)$$
 $\Delta H = 34 \text{ kJ}$

Thinking/Inquiry:	[/7]
1-The complete combustion of 1.00 mol of sucrose, C12H22O11, releases grams of sucrose is needed to change the temperature of 750 g water from	
$C12H22O11(s) + 24O2(g) \rightarrow CO2(g) + 11H2O(l)$	(/4)
2-The complete combustion of 1.00 mol of an unknown compound, XYZ,	releases –5641 kJ of energy
$XYZ(s) + 12O2(g) \rightarrow 12CO2(g) + 11H2O(1)$	(/3)

Use the enthalpy change of this reaction, and enthalpies of formation from the table, to determine the enthalpy of formation of <u>the unknown compound</u>.

1- For the following pair of substances state which would have a higher rate of reaction and explain

why (refer to the 5 factors that affect rate, and explain why that factor affects the rate of reaction) (...../3)

3g of salt dissolved in a solution of 1M (1 mole/L) hydrochloric acid **versus** 3g of salt dissolved in a solution of 0.1M (0.1 moles/L) hydrochloric acid.

2- What is a catalyst? What is the effect of adding a catalyst on the rate of reaction? Explain what happens in the reaction to cause this effect. (......../2)

3- State two reasons why some collisions may not result in a chemical reaction. (........./2)

Reason I:

Reason II:

- 4- What is the meaning of "enthalpy of formation"? (...../2)
- 5-Calculate the enthalpy change from bond energies for the following reaction: (3)

$$CH_3COOH + CH_3OH \rightarrow CH_3COOCH_3 + H_2O$$
 $\Delta H = \gamma$

Application:	[/10]
1-An endothermic reaction is given as below: (/2)	
$XZ + YBD \Rightarrow XBD + YZ$	
Draw the structure of the activated complex for this reaction. (1) Within the activated complex, show/name the bonds which are stronger than other	r bonds in the compound. (1)
2-Calculate the value of ΔH^0 for the following reactions using the table of <u>standar</u> Assume all reactants and products are in the <u>gaseous state</u> . (Show all your work) $CH_3CH_2CH_3 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$	

3-Use the following data to: (........./6)

a) calculate the rate law equation ,including all exponents, rate constant and its unit for the system.(4 marks)

$$NO_{(g)} + H_{2(g)} \longrightarrow HNO_{2(g)}$$

Experiment	NO (mol/L)	H2 (mol/L)	Initial Rate of Reaction (mol/(L·s))
1	0.001	0.004	0.002
2	0.002	0.004	0.008
3	0.003	0.004	0.018
4	0.004	0.001	0.008
5	0.004	0.002	0.016
6	0.004	0.003	0.024

- b) Calculate reaction rate when [NO]=[H2]=0.20 mol/L. (1 mark)
- c) What is the over all order? (1 mark)